Efficient Robust Matrix Factorization with Nonconvex Loss

نویسندگان

  • Quanming Yao
  • James T. Kwok
چکیده

Robust matrix factorization (RMF), which uses the `1-loss, often outperforms standard matrix factorization using the `2loss, particularly when outliers are present. The state-of-theart RMF solver is the RMF-MM algorithm, which, however, cannot utilize data sparsity. Moreover, sometimes even the (convex) `1-loss is not robust enough. In this paper, we propose the use of nonconvex loss to enhance robustness. To address the resultant difficult optimization problem, we use majorization-minimization (MM) optimization and propose a new MM surrogate. To improve scalability, we exploit data sparsity and optimize the surrogate via its dual with the accelerated proximal gradient algorithm. The resultant algorithm has low time and space complexities and is guaranteed to converge to a critical point. Extensive experiments demonstrate its superiority over the state-of-theart in terms of both accuracy and scalability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonconvex Relaxation Approaches to Robust Matrix Recovery

Motivated by the recent developments of nonconvex penalties in sparsity modeling, we propose a nonconvex optimization model for handing the low-rank matrix recovery problem. Different from the famous robust principal component analysis (RPCA), we suggest recovering low-rank and sparse matrices via a nonconvex loss function and a nonconvex penalty. The advantage of the nonconvex approach lies in...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

Robust Multi-subspace Analysis Using Novel Column L0-norm Constrained Matrix Factorization

We study the underlying structure of data (approximately) generated from a union of independent subspaces. Traditional methods learn only one subspace, failing to discover the multi-subspace structure, while state-of-the-art methods analyze the multi-subspace structure using data themselves as the dictionary, which cannot offer the explicit basis to span each subspace and are sensitive to error...

متن کامل

Memory-efficient Kernel PCA via Partial Matrix Sampling and Nonconvex Optimization: a Model-free Analysis of Local Minima

Kernel PCA is a widely used nonlinear dimension reduction technique in machine learning, but storing the kernel matrix is notoriously challenging when the sample size is large. Inspired by [YPCC16], where the idea of partial matrix sampling followed by nonconvex optimization is proposed for matrix completion and robust PCA, we apply a similar approach to memoryefficient Kernel PCA. In theory, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017